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Abstract

In a recent theoretical study [see C. Sansour, I. Karsaj, J. Sori¢, A formulation of anisotropic continuum elastoplasticity
at finite strains. Part I: Modelling, International Journal of Plasticity 22 (2006) 2346-2365], a constitutive model for aniso-
tropic elastoplasticity at finite strains has been developed. The model is based on the multiplicative decomposition of the
deformation gradient. The stored energy function as well as the flow rule has been considered as quadratic functions of
their arguments. In both cases, the list of arguments is extended to include structural tensors which describe the anisotropy
of the material response at hand. Non-linear isotropic hardening is considered as well. In this paper, the integration of the
constitutive law is presented. The associative flow rule is integrated using the exponential map which preserves the plastic
incompressibility condition. The numerical treatment of the problem is fully developed and expressions related to the local
iteration and the consistent tangent operator are considered in detail. It is shown that while the consistent linearisation of
the model is quite complicated, it still can be achieved if various intriguing implicit dependencies are identified and cor-
rectly dealt with. Various numerical examples of three-dimensional deformations of whole structural components are pre-
sented. The examples clearly illustrate the influence of anisotropy on finite elastoplastic deformations.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent study by Sansour et al. [13], a general thermodynamically consistent theory for anisotropic elas-
toplasticity at finite strains has been proposed. In this paper, we develop the numerical integration schemes
and present numerical examples. Given the multiplicative structure of the theory, the development of appro-
priate numerical schemes is in fact an involved task. Some inelastic computations at finite strains involving
anisotropy has been reported in the literature. In [11,17], the computations were based on additive decompo-
sitions of an appropriate strain measure without any reference to the multiplicative decomposition of the
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deformation gradient. Additive decompositions preserve the simple structure of the linear theory. The theo-
retical framework can be straightforwardly developed, essentially by copying that of the linear theory. The
same is true for the numerical schemes as well. However, the elegance and physical motivation assigned to
the multiplicative decomposition remain lacking. The multiplicative decomposition itself has been employed
in [10,3,6]. Beyond serious differences on the theoretical side between the treatments in the mentioned papers
and ours, in the first two mentioned papers only numerically derived tangent operators where employed since
consistent linearisation was considered too complicated or not available. The third paper was of rather theo-
retical nature. A consistent tangent operator was derived in [15,12], however, the anisotropy was only present
in the elastic law while the flow rule was considered isotropic.

In this paper, we embark on a complete implementation of the theory. The integration of the flow rule is
carried out using exponential map procedures as outlined in [16]. The use of the exponential map was first
suggested in [4] for symmetric arguments and then extended to non-symmetric arguments in [14,16]. The task
of model linearisation within numerical schemes is all but straightforward. Due to the multiplicative structure
of the theory, various intriguing implicit dependencies must be first identified in order for the linearisation pro-
cess to be correctly accomplished. This is true for the local iteration step as well as for the derivation of the
consistent tangent operator. Both steps are presented in detail.

The theory and the computational algorithms have been implemented and applied to a shell finite element
developed in [14,16]. The shell formulation allows for the use of complete three-dimensional constitutive laws.
Accordingly, the deformations considered are always three-dimensional.

The paper is organized as follows. In Section 2, a summary of the theoretical framework is presented. Sec-
tion 3 is devoted to the integration of the evolution equations; while Section 3.1 discusses the local iteration,
Section 3.2 considers the derivation of the consistent elastoplastic tangent operator. In Section 4, various
numerical examples are presented. The paper closes with some conclusions.

2. Summary of the theoretical framework
For details the reader is referred to [13]. Let F be the deformation gradient and
F = F.F, (1)

its corresponding decomposition into elastic and inelastic parts. Define the following strain-like tensors of
right Cauchy—Green-type:

C=F'F, (2)
C.=F!F,, (3)
C, =FF,, (4)

where C. defines the elastic strain tensor and C, is its analogous plastic counterpart. Consider the rates of F
and F, defined by

L=F'F, L,=F'F, (5)
and let t be the Kirchhoff stress tensor and E its material counterpart (Eshelby-like) defined by

E=F"7F " (6)
The dissipation inequality

D=2:L-py(C.,Z) =0, (7)

where / is the stored energy function, Z is an internal variable and p, the density at the reference configura-
tion, can be reduced to the following statements. Two relationships for the thermodynamical forces:
oy
-1

E = 2p,CF, fFI;T, (8)



C. Sansour et al. | Journal of Computational Physics 227 (2008) 7643-7663 7645

oy
Y=—-p,— 9
pO aZ 9 ( )
and a reduced dissipation inequality
D,=E:L,+Y-Z>0. (10)

We introduce the privileged directions of the material related to the elastic response as ;v., i = 1,2, 3, where
the relations hold

iVe * j¥e = 5;‘;’7 (11)

with ¢§;; as Kronecker’s delta and a dot denoting scalar multiplication of vectors. Given the privileged direc-
tions, one defines the so-called structural tensors as the tensor products

iMc:ivc®ch» i= 17273- (12)
The free energy function is now assumed to be of the following quadratic form:
3 13
povre = o + 5 D w4 %o i) |- (13)
=1 =1

Here the invariants J; and J;;3) are defined according to
Ji=t[(Mo)Ce], Juys = tr[(M)C2], i=1,2,3 (14)

Herein o, 045, %40 are material constants, where o; = o;. We use also the alternative numbering:
O(11) = Ol4, O22) = O, 0(33) = O, OL(12) = a1y = Ol7, 0l(13) = O(31) = Oig, Ol(23) = %(32) = dlg. Note that a general
non-linear formulation of the free energy function in terms of the invariants J 3y does not insure polyconvex-
ity, of relevance for the existence of solutions. However, the present formulation restricts the same invariant to
a linear term, which is completely sufficient to describe the behaviour of metals of interest in the present study.
Accordingly, the issue of polyconvexity of the free energy function is not relevant in the present restricted
context.
With the explicit form of the free energy function, the evaluation of (8) results in the expression

[

N — ) — _
=2p03 > 4 CC,'(M.) + v (CC,'(M,)CC,' + CC,'CC, ' (M.)) (15)
i—1 a]i 6J(z‘+3)

Here, (;M.) are modified structural tensors defined by
(M) =F,(M.)F,", i=123. (16)
For a better physical interpretation and experimental validation, it is useful to redefine the material constants.

In comparison with more classical elasticity constants, which can be found in any text book, e.g. [9], the mate-
rial parameters take

0642;1(12%22‘22—@2—@34-(;23)7 (17)
a5:%<12%2,11‘)4:3_G12+G13_G23>7 (18)
0‘6:%<%+G12_G13_G23>7 (19)
g = R, (1)
oy = 2B Vi3Vl (22)

4E\EsA



7646 C. Sansour et al. | Journal of Computational Physics 227 (2008) 7643-7663

1
o = 3 (G2 + Gi3 — G23), (23)
1
o = g(Gn - Gi3+ Gx), (24)
1
=g (—Gi2 + Gi3 + Gn), (25)
o = — (o + o7 + g + 2019, (26)
oy = —(as + o7 + a9 + 2017, (27)
o3 = —(ot6 + otg + 0ot9 + 2012). (28)

In the above relations, E;, v;; and G;; denote the elastic constants related to the three different directions of
orthotropy. Furthermore, 4 is abbreviation for the following expression

I —viavar — Va3V — vaiviz — 2viVa3 Vs
E\EE; '

A=

(29)

Having established the expression for the stress tensor, the flow rule follows. First the yield function is defined
by

b=/ Aei— @~ 1)L (30)
=2

i=1

g o,
ﬁtlf + Bl (43 + B) Z i+l for i # j, (31)

and the non-linear isotropic hardening by
Y =—HZ — (0. — o))[1 — exp(—nZ)]. (32)

The scalar ¢%, as well as 8, — B, are material constants. Furthermore, H is the linear isotropic hardening
parameter, o, is the saturation yield stress, 1 is a constitutive parameter quantifying the rate at which the
saturation yield stress is attained during loading The yield function itself is assumed to depend on the
invariants

I; = tr[(M,)devE], [I;3 = tr[(M,)(devE)’], i=1,2,3, (33)
where the structural tensors related to the plastic flow are

M, =v,Qw, i=17273, (34)
and ,v, as the privileged directions of the plastic flow where the relations hold

Vy o ¥y = Oy, (35)

which may differ from those defined for the elastic response. Clearly, the privileged directions of the material
Ve, v, must be given a priori when defining the problem at hand. As all material parameters of a specific spec-
imen they must be determined by experiments. In the examples considered in Section 4, the directions are given
by an angle and a plane (the directions are orthogonal and so one angle in a plane is sufficient to define the
directions).

The evolution equations now read

;00 _ \FO—?I Oy 0devE
L=t == v=\33 7500z & (36)

. 3¢ \F
Z= /laY =7Z= T (37)
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where
oy 3 13
== |2B4:(M,) + B (devET (M) + (M,)devE") —Z (o0 (M) + 1;(M
O0devE 4 245
for i # j.

Herein, Z is plastic multiplier.
In comparison with experimental values, the material parameters can be determined to

P 1( Lo )

? (ng)z 2 (‘712)2 (‘7(1)3)2 (‘723)2 ,

gL _ 1< Lo, )
Tk 2\ (%) (oh) (6%))
ﬁ4:_ 1 + - 1 )

1 1 1
- >+ >+ 2]
( (a,) (a3) (a9%) )
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(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

The values ag. are experimental values and indicate the flow stress in different direction. In the following box,

we summarize the theoretical framework:

Kinematics:
F =1+ Gradu, C=F'F, C, = Fng, L, = F;le

Elastic law:

3
pOlpe = Z
i=1

Ji = tr[(,—Me)Ce], J(f+3) = tr[(jMe)CgL i= 1, 2, 3

o : al//e alpe 1/ N -1 -1 —1l/ N
_—Zpo{z [ Y CC,'(M ) +3 Tis (CC,'(M,)CC," + CC.'CC, (,-Me))]

(Me) = F,(MF, ", (Me) = Ve @ve, =123

1 3
%wlit+ 5 ,:21 wipd i j + Aiv9)S (i4+3)

1
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Flow rule:
29 0
¢ = 3[011\/?_(_ (011 - Y)]
3 , 13
x= 2 Bil; + Bivoyi+3) + 2 ;ﬁ<i+j+1)1i1j , iF]
I; = tr[(M,)devE], I3 =tr[(M,)(devE)’], i=1,2,3
(iMy) = ivy ® ivy7 = 17 27 37

. 2
L — )v Z - —)s,
p v \/;

v = \/%2_1dev {Z [Zﬁil,-([My)T + Bive) ((M,)devE + (M,)"devE)

i=3

w

w
=

/3(,-+j+1)((,«My)le +1f(/My)T)] }, for i #j

Box 1: Summary of the theory

We recall a result discussed in the theoretical part of this work that the theory is not invariant with respect
to superimposed rotations on F,. In fact, an underlying assumption is that the inelastic deformation does not
influence the elastic response. The validity of such an assumption could be questioned. In fact, the importance
of the numerical implementation to follow is that it give us means to test such assumptions by comparing the
numerical results against either experiments or further numerical results achieved by means of alternative the-
oretical frameworks.

3. Integration algorithm

The constitutive equations are integrated using the well known predictor—corrector method. For any two
time steps [t,,%,41] with the time increment AT =t¢,,, —t,, the displacements and internal variables are
assumed to be known at time step ¢, and they have to be determined for ¢,,;. First the constitutive law is
assumed to be elastic with frozen internal variables (trial step). In the plastic corrector step, the right Cau-
chy—Green tensor C is held fixed while the internal variables are updated so as to fulfill the inelastic constitu-
tive laws. While this idea is classic and is used in most inelastic computations it has never been applied to
anisotropic multiplicative computations. It is this multiplicative structure with the full anisotropy which ren-
ders its realisation especially complicated and cumbersome. In both steps, the trial and the corrector step, lin-
earisation processes are to be performed which have never been employed so far. In order to achieve quadratic
convergence the linearisation must be performed correctly. Extreme care is to be exercised in order to achieve
the goal as many nested and complicated dependencies exist which have to be meticulously dealt with. The
linearisation process is of great importance for general non-homogenous large deformations. Computations
of this type are very sensitive to the quality of the tangent operators employed. Out of these reasons, we believe
that it is worthwhile to develop the numerical procedures in full, which is to happen in the next subsections.

The understanding that the unimodular tensor F, is an element of the Lie group SL* (3, R*), while L,, is an
element of the corresponding Lie algebra, motivates the use of the exponential map for time integration

F '|,,; = exp(-ATL,)F,"],. (48)

P ‘n+

The reader may recall that Lie groups are transformation groups (matrices) with certain features. The unimod-
ular group is the group of matrices with determinant equals one. The term algebra of the group designates its
rates. The algebra of SL"(3,R’) constitutes of matrices with vanishing traces. By the fact that
detexp(—ATL,) = exp(—ATtrL,) = exp(0) = 1, the condition of plastic incompressibility is preserved exactly.
The exponential map has been introduced by Weber and Anand [19] and Eterovic and Bathe [4] to integrate
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inelastic flow rules, where approximate evaluations of the exponential map with symmetric arguments were
carried out. An evaluation of the exponential map with non-symmetric arguments, up to an arbitrary
accuracy, was given in [14]. This scheme is adopted in this paper as well. The derivative of the exponential
map with respect to its argument is computed following a suggestion in [16].

3.1. Local iteration

The trial step provides us with the value of C. Within a finite element formulation, at every integration
point we wish to calculate an updated value for the elastic strain measure CC, ', which reads

CC,"|,,; = C|,,, exp(—ATL,)C,"|, exp(—ATL,). (49)

n+1

This quantity determines the stress tensor. On the other hand, the rate L, itself, as given in (36), depends on
the stress. Accordingly, a full iteration process is necessary to determine the inelastic rate such that the flow
rule is not violated. The guiding principle is to calculate the correct value of the plastic multiplier /1 through a
full Newton—Raphson iteration. As no co-axiality between the rate and the stress exists, the dependencies of
the yield function ¢ on tensorial components must be taken into account. Note that during the iteration not
only the value but the direction of the stress will change as well.

At any iteration step, say i + 1, the new value of 1 is given as

Ay = A, + AL (50)

Following Eq. (37), the value of 1|, at the end of the iteration cycle (time step n + 1) determines the new
internal variable Z as well

2.,
Z‘nJrl :Z|n+ \/%AT/LLIH' (51)
The calculation of AZ is based on the linearisation of Eq. (30). Accordingly, one has

0p OE  0¢ OY o
<EE+55) ’['Aﬂ— =l (52)

(3= dpor\
Ai_—(ﬁa—s—ﬁa) .. (53)

Some of the terms involved in this equation can be calculated in a straightforward manner. Using Egs. (30)
and (32) one has

9 24 1 0y OdevE

oz~ V3712 7 adevE 0= >4
¢

ar V3 o
oY 2

a_) = _\/%AT[H + n(aoc - GY) eXp(_”IZ|n+1)}' (56)

The term 0y/0dev E is known from (38). More involved is the term 0Z/04 to which we now turn our attention.

In the following and in an effort to make the operations transparent, index notation will be used through-
out. Now, E depends on C and C ' During the local iteration, C is fixed and so is not a variable. On the other
hand, C; ! depends on F, ', which, through (48), depends on L,. The latter depends, via Eq. (36);, on 4 in two
different ways. First, explicitly and, second, implicitly through the dependency of v on &, the dependency of
which on 1 we are seeking. With theses explicit and implicit dependencies, 0=/01 reads

0! om! (O(Ly); O(Lp); dvi 0=
a4 A(Ly)y \ di ovi o0&, o1 )’

(57)

explicit

which yields directly the expression
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ai o ALy ov oE (58)

e -1 .
S

m
explicit

It is important to point out that the term ‘explicit’ refers to the derivative of those terms which explicitly ap-
pear in the quantity with respect to which the derivative is considered. Note that in Eq. (58) the inverse of a
fourth order tensor is to be performed.

In the following, we attend to the determination of the different terms involved in (58). Altogether we need
to determine the following expressions: 0L, /04| 0E/0L,, (0L, /0v)(0v/0Z). For the sake of clarity this is
done in the following sections.

explicit?

3.1.1. The term 0Ly /02| oyppicit
The explicit derivative follows immediately from (36)

OLyp)y| \ﬁ o O OdevE), _ (59)
o4 explicit 3 2ﬁ a(dev E)Z aEé a

3.1.2. The term 0Z/0L,
The derivative 0Z/0L,, is derived using the chain rule by observing that = depend on L, through its depen-
dency on F, ' One has first

= = O(F')
i - — _11 E p . (60)
O(Ly);  O(F,)S o(Ly);

p N

Each term in this equation is considered individually and will be discussed in the following paragraphs.

3.1.2.1. The term 02/ 6F; ) depends on F; !'via its dependency on C; "and ,,M.. From Eq. (15), we conclude

05! 3 Py — oy facehy (M),
T =2 —— i (CCNI (ML), + o= | s (ML), + (CC, )
ofF, ), ”{Z lwmaw;l);( P M, o,y M S
ay facchy e — 0(CCMy W OM)
lmMe CcC I+CC ?mMe 4p+ccla meaCCI./
aJm+3 ( a(Fgl)z ( )a( P )b ( p )1( )a a(F;): ( P )1 a(Fgl)i ( P )b
- Lw0M), ace e
+CC1QCClb m €b+ P.l CCI mMej+CC1?—p,amMej . 61
( P )7( P )a 6(F;l)f a(F;l); ( P )a( )b ( P )z 8(F;l); ( )b ( )
The derivatives 0y /0J,, can be easily provided. Eq. (13) yields
SIA
po—:OC1+OC4J1+OC7J2+OCgJ3, (62)
oJ,
W,
po—:OC2+OC5J2+{X7J1+069J3, (63)
aJ,
W,
Po =03+ OC6J3 + O(ng + OCng, (64)
a0J;
W,
poa—"]4 = 05107 (65)
W,
Pogy, = om (66)
0
Ve _ (67)

Poa—J6
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The same is true for the second derivative of the above expressions with respect to F b

0‘4a S+ aJZ -+ o m;)
2 s
L = awz T o73 aJ] Jr"‘%(m) ;
0n)(F, ),
O((’E ) +O€ga( —‘rO(ga( 2).
where we have, using (14),
aJm ns — u sn — .
= (ML)(0),,(F, )+ (M) (F,),(C),,, i=1,2.3. (68)
Further we need the expression
G(CC;)‘?
——L2 2 =(C),(F,)" + (C),(F,")"“s, 69
a(F;l)f ( )lr( P ) ( )lu( p ) r ( )
and, finally, by taking into consideration the expression of the modified structural tensors (Eq. (16)), one has
0(,M.)" e ;
WM () (ML) + (LML) (70)

This completes the determination of 0E/0F, L

3.1.2.2. The term OF Ly OL,. The second derivative on the right hand side of (60) is established using (48). One
has

oF,"); AR, dexp(-ATLy)]; 9(~ATL,):

o(L,); _a[exp(—pATLp)]_ef O(—ATL,)} oLyt (71)
as well as
o(F 1y
( P )s 7( ‘ )fér (72)

Olexp(—ATL,)|;

The second term on the right hand side of (71) is the tangent of the exponential map with respect to its argu-
ment resulting in a fourth order tensor. We consider an expression derived in [16] which is denoted by Y. Alto-
gether one has

L= —ATY R'(F)'),), (73)

which completes, together with the results of the last section, the determination of 0Z/0L,,.

3.1.3. The term (0L,,/0v)(0v/0=)
In Eq. (58), we still need an expression for (OL,/0v)(0v/0=). First, we consider the derivative of L, with
respect to v. Using Eq. (36) one has

o(Ly);
=/ 4
ov§ / (74)

By the very definition of v, also Eq. (36), the following relations hold

o _ \f ), %y O(devE), 1 oy oy 0(devE) 6(deVE),l('
=, 32,7 |0(devE)’d(devE), 05 247 0(devE)’ d(devE). 0E" =,

(75)

=m
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While 0y/ddevE is defined in Eq. (38), the second derivative is given as

azl _ \ a k k a k ca
e o] 2 {2ﬁ,- (ML), (ML)] + B |56M)7 + (M)

3
37 B [(MFGML; + (M) M, ) | } (76)
=1
where the condition i # j has to be fulfilled. Finally, we have
a(dev E)Z e ¢b 1 e b
T = 5(15]' — 351-5a. (77)

By now, all necessary ingredients to calculate 02/04 in Eq. (53) have been provided.

The previous sections give a clear picture of how much the local iteration in this general anisotropic setting
differs from that of an isotropic one. In isotropic cases, local iterations, if any, are reduced to solving simple
scalar equations.

3.2. The algorithmic tangent operator
In this section, the procedure for the computation of the algorithmic tangent operator is developed based

on the systematic linearisation of the second Piola—Kirchhoff tensor S with respect to the right Cauchy-Green
deformation tensor. The tensor S can be written as

S=C'z (78)
Accordingly, its linearisation takes the following form

S oc! o=

—=—E+C' . 79

ac-oc - % ac (79)
The first term on the right hand side is readily provided

a(c—l o o —1\ai — - ) —1\ai ji

S @ =@, =~ S (50)

ij
The computation of the term 0Z/0C is based on the same ideas tested in the local iteration. One splits the
derivative into explicit terms and implicit ones. The correct identification of the implicit dependencies is at
the heart of the whole procedure. According to this, we may elaborate

b =b b

=0 2 J(Ly); =

3(C)y ~ o(Ly)E 0(C),, T 3(C) 81)

kil lexplicit

Herein, the term 0Z/0L, is identical to the term considered in Eq. (60) and evaluated in some sections of Sec-
tion 3.1. The expression established in the last local iteration is the one which is to be used in the evaluation of
(81). For clarity, further terms involved in (81) are evaluated in the following sections.

3.2.1. Evaluation of 0Z/0C| i
We start with Eq. (15) which provides

3 2
0 W -INa; NA V i
=2p e (CC) M), + —— —=—
explicit O{; [aJma(C)kl P a‘]m a(C)kl
oy [3CG, i,
Wy | 0(C),, "

ACC,); mtvb, wr v 10 00CC
ey (CC ) Me), + (CC) —mm— (M) | | o (82)

=/
=

1

a(C)kl

M.)’(CC.") + (CCH!(,M.)

a p

(C)y
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Using (62)—(67) the following derivatives can be established

o o o
%50 +°‘7a ) +°‘Sa(;

azilﬁ =< o5 aab + 07 5 a + Olg a?J; (83)
3UIA(C), €
%6 30 a + X8 370y a( + Oy aC §

where we have

of; mope vk e\
a(C)kl - (i e)n (Fp )m(Fp ) ? L= 17273' (84)

The last term to be defined in Eq. (82) is
a(cc,y
0(C)y

=5/ (F,"),(F,")”, (85)

p

which completes the evaluation of 0Z/0C]., -
3.2.2. Evaluation of 0L, /0C

To evaluate Eq. (81) we still need the derivative of L, with respect to C. The approach is based on obtaining
an explicit expression for 0v/0C with the help of which the derivative 0L,/0C can be established. First, Eq.
(36) results in

o(Ly); (L), 0. O(Ly); ov; (86)
a(C)"S B al E) (C)VS avZ a(C)rS7
explicit explicit

ove D = 0z (L)
R R = )
a(C)rs e a(C)m explicit a(Lp)/ a(c)rs

Inserting (86) into (87) yields

v O { g g4 (6(Lp)l‘; oL o(Ly); Vs )} (88)

a(C)rs :d a(c)rs explicit | a(LP); 02 explicit a(c)rs avﬁ explicit a(c)rs .

Note that we could not have solved for 0L, /0C should we have inserted (87) into (86), since 04/0C itself is also
a function of 0L, /0C as will be shown shortly. The following simple relations hold for the explicit derivatives:

O(Lp);
_ i <b P/f
= 20,0/, 3

I
=
~®

(89)

explicit explicit

What we still need is the derivative of the scalar / with respect to C. This is obtained by taking the derivative of
the yield function, defined in Eq. (30), with respect to C. One has first

0 0 08" (L) 0V 0 0F° d¢p 04 v
P00 05 )yt B0 S5 0 Yy, (90)
a(C)rs a‘:’a a(LP)d aV; a(c))s‘ a:’a a(C))‘S explicit aj‘ a(c)rs
which, together with (89), results in
Ry 1 0 0% 0¢p 0=°
S U A L A . (91)
a(c)rs o1 a‘:g a(Lp)d a(C)m a‘:’a a(C)m explicit

The derivatives 0¢/0A and 0¢/0= have been considered in Section 3.1. Their values are available from the
last local iteration step. Eq. (91) is now inserted into (88) and the resulting equation is solved for the term
ov/0C:
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oA u u

explicit

(92)

Note that all terms involved in this equation are either known or has been provided in the last step of the local
iteration: the derivative ov/0Z is established in (75), 0Z/0L,, is determined through (60), 0¢ /0= is readily avail-
able through (38), and 0Z/0C],,; is calculated in Section 3.2.1. Hence, 0v/0C can be evaluated. The eval-
uation necessitates the inversion of a fourth order tensor. With this result at hand we can solve Eq. (91).
Having established the expressions for 0v/0C and 04/0C we can evaluate Eq. (86) and finally, with that expres-
sion we can solve for Eq. (81), which results in the exact expression for the consistent elastoplastic tangent
operator as formulated in (79).

Note that the tangent operator is non-symmetric in general. The loss of symmetry is not a direct conse-
quence of the anisotropy itself but a consequence of the fact that the multiplicative structure of the theory that
results directly from the multiplicative decomposition of the deformation gradient, together with the devel-
oped integration scheme.

4. Numerical examples

The integration algorithms presented so far have been implemented in a code for shell finite element com-
putations. The shell theory and the finite element formulation have been presented in [14,16]. The shell formu-
lation is based on a seven-parameter theory which includes transversal strains and thus enables the application
of a complete three-dimensional constitutive law. The enhanced strain concept is applied to avoid locking
phenomena.

The level of complexity exhibited by the tangent operator restricts the time steps for which convergence is
achieved in the case of complex deformations. In the examples to follow (two- and three-dimensional), some
500 time steps have been used to arrive at the final deformed configuration.

4.1. Uniaxial tensile test

Lademo et al. [7] performed experiments on aluminum alloy AA7108-T1 specimen, Fig. 1. The main
idea was to investigate the influence of the main material directions on the material parameters. Several
experiments are performed where the specimens directions are rotated for 0°, 35°, 45°, 55° and 90° relative
to the extrusion direction. In order to compare the numerical and the experimental results, the model is
computed for different position of the material axes (0°, 12°, 25°, 35°, 45°, 55°, 75° and 90°), see Fig. 2.
The following material parameters for the numerical model are considered according to the ones identified
in [7]

200

65 | 70 . 65

2 ‘ ‘ 2
[=Jo.02[A]

\ 125 /

o
40 ———-———,®/_-——--————————————— -—
f R15

Fig. 1. Uniaxial tensile test: geometry of specimen used for experimental test, from [7].
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70 x 13
elements

12.5

Fig. 2. Uniaxial tensile test: geometry of numerical model and material data.

E; = 68135 MPa, E,=69316 MPa, E; = 68135 MPa,
via =032, v, =032, v =0.32,

Gi» = Gi3 = Gyy = 25808.7 MPa,

o1 = 295MPa, o0 =263 MPa, o33 = 215.8 MPa,

012 = 120.69 MPa, 3 = 140.69 MPa, 0»; = 140.69 MPa,
H =0 MPa.

A comparison of the numerically and experimentally obtained curves, representing yield stresses in different
directions, is presented in Fig. 3. As can be noticed, the results are in good agreement.

4.2. Isoerror maps

In order to get some insight into the accuracy of the numerical algorithm, isoerror maps are developed as
described in [18]. Despite its lack of mathematical rigor, the procedure provides a quick numerical assessment
of the accuracy of the integration algorithm.

Three points on the yield surface are selected which represent a wide range of possible states of stress. These
points, labeled A, B and C, see Fig. 4, correspond to uniaxial, biaxial and pure shear stress states, respectively.
In these cases, one element is loaded to the state A, B or C and than various combinations of strain increments
(Ae;, Agy) are applied in a single step. Next, the ‘exact’ stresses are calculated for the same strain increment by
subdividing the increments until further refinement produces negligible changes in the calculated stresses (in
this case 1000 subincrements are made). Results are reported in terms of the relative root mean square of
the error between ‘exact’ (S,) and computed solution (S) according to the expression

s VIS=S): =S 00

(S.:8S.)

300 T T T T T T T T

280 |- present formulation

Lademo et.al. 1999 o

[

D

(=}
T

equivalent stress, MPa
[\
=
[=}
T

0 10 20 30 40 50 60 70 80 90
rotation angle, °

Fig. 3. Uniaxial tensile test: comparison of numerical and experimental results.
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Fig. 5. Isoerror procedure: dependency of the numerical error on the strain increments in two directions for the load case A.

Computations are performed for an orthotropic material with the following parameters:

E, = 480427 MPa, E, =41800 MPa, E; =41800 MPa,

v = 0.2355, v =0.258, v =0.24,

G, = 14214.0 MPa, Gj3 = 14804.0 MPa, G,; = 14804.0 MPa,

o1 = 180 MPa, o0y =220 MPa, 033 = 250 MPa,

o1, = 187.02 MPa, a3 =127.02MPa, gy = 127.02 MPa.
Results are shown for different strain increment pairs. The strain increments are normalized with respect to the
yield strain (ey). Figs. 5-7 show the error of the numerical procedure for the three different load cases named
A, B and C. As can be observed in all three cases the error is not larger than 3%. For example, in [8] largest
error is up to 20%, in [1] it is between 1.4% and 3.5% or in [2] between 5% and 20%. However, it should be
mentioned that while the first paper is isotropic in nature, the two others consider anisotropy within the small
strain regime only.

4.3. Circular plate subjected to line load

The idea to this example is borrowed, though slightly modified, from Papadopoulos and Lu [11]. The for-
mulation there is based on the additive decomposition of the logarithmic strain tensor. A circular plate of
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Fig. 7. Isoerror procedure: dependency of the numerical error on the strain increments in two directions for the load case C.

radius R = 400 mm and thickness ¢t = 10 mm with a concentric hole of radius R; = 200 mm is subjected to a
line load of ¢, = 1000 N/mm alongside the inner radius. Out of plane deformations are prevented so that only
planar displacements and rotations can occur. Due to the geometrical and material symmetry one quarter of
the plate is discretised with 10 x 10 elements. The material data and geometry of the plate are shown in Fig. 8.

Computations are performed for an elastically isotropic but plastically anisotropic material. The loading is
presented in Fig. 6 but the computation itself is carried out until the maximum deformation, as shown in the
figures, is reached.

Here three different sets of parameters are considered. This is determined by considering different ratios of
the yield shear stress to the normal shear stress. In case A we have ¢}, = 0.5¢9,/v/3, in case B ¢}, = o9, /V/3
(isotropic case) and in case C ¢¥, = 2.069,/ /3. The axes of anisotropy are defined to coincide with global axes
1 and 2. Fig. 9 shows deformed configurations for the three different case studies. As expected, in case A the
plastic strains are concentrated in a direction at an angle of 45°, while in case C the concentration takes place
in the direction of the material axes 1 and 2. In both anisotropic cases, the non-axiality between deformations
and loa