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Abstract

In a recent theoretical study [see C. Sansour, I. Karšaj, J. Sorić, A formulation of anisotropic continuum elastoplasticity
at finite strains. Part I: Modelling, International Journal of Plasticity 22 (2006) 2346–2365], a constitutive model for aniso-
tropic elastoplasticity at finite strains has been developed. The model is based on the multiplicative decomposition of the
deformation gradient. The stored energy function as well as the flow rule has been considered as quadratic functions of
their arguments. In both cases, the list of arguments is extended to include structural tensors which describe the anisotropy
of the material response at hand. Non-linear isotropic hardening is considered as well. In this paper, the integration of the
constitutive law is presented. The associative flow rule is integrated using the exponential map which preserves the plastic
incompressibility condition. The numerical treatment of the problem is fully developed and expressions related to the local
iteration and the consistent tangent operator are considered in detail. It is shown that while the consistent linearisation of
the model is quite complicated, it still can be achieved if various intriguing implicit dependencies are identified and cor-
rectly dealt with. Various numerical examples of three-dimensional deformations of whole structural components are pre-
sented. The examples clearly illustrate the influence of anisotropy on finite elastoplastic deformations.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent study by Sansour et al. [13], a general thermodynamically consistent theory for anisotropic elas-
toplasticity at finite strains has been proposed. In this paper, we develop the numerical integration schemes
and present numerical examples. Given the multiplicative structure of the theory, the development of appro-
priate numerical schemes is in fact an involved task. Some inelastic computations at finite strains involving
anisotropy has been reported in the literature. In [11,17], the computations were based on additive decompo-
sitions of an appropriate strain measure without any reference to the multiplicative decomposition of the
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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deformation gradient. Additive decompositions preserve the simple structure of the linear theory. The theo-
retical framework can be straightforwardly developed, essentially by copying that of the linear theory. The
same is true for the numerical schemes as well. However, the elegance and physical motivation assigned to
the multiplicative decomposition remain lacking. The multiplicative decomposition itself has been employed
in [10,3,6]. Beyond serious differences on the theoretical side between the treatments in the mentioned papers
and ours, in the first two mentioned papers only numerically derived tangent operators where employed since
consistent linearisation was considered too complicated or not available. The third paper was of rather theo-
retical nature. A consistent tangent operator was derived in [15,12], however, the anisotropy was only present
in the elastic law while the flow rule was considered isotropic.

In this paper, we embark on a complete implementation of the theory. The integration of the flow rule is
carried out using exponential map procedures as outlined in [16]. The use of the exponential map was first
suggested in [4] for symmetric arguments and then extended to non-symmetric arguments in [14,16]. The task
of model linearisation within numerical schemes is all but straightforward. Due to the multiplicative structure
of the theory, various intriguing implicit dependencies must be first identified in order for the linearisation pro-
cess to be correctly accomplished. This is true for the local iteration step as well as for the derivation of the
consistent tangent operator. Both steps are presented in detail.

The theory and the computational algorithms have been implemented and applied to a shell finite element
developed in [14,16]. The shell formulation allows for the use of complete three-dimensional constitutive laws.
Accordingly, the deformations considered are always three-dimensional.

The paper is organized as follows. In Section 2, a summary of the theoretical framework is presented. Sec-
tion 3 is devoted to the integration of the evolution equations; while Section 3.1 discusses the local iteration,
Section 3.2 considers the derivation of the consistent elastoplastic tangent operator. In Section 4, various
numerical examples are presented. The paper closes with some conclusions.
2. Summary of the theoretical framework

For details the reader is referred to [13]. Let F be the deformation gradient and
F ¼ FeFp ð1Þ
its corresponding decomposition into elastic and inelastic parts. Define the following strain-like tensors of
right Cauchy–Green-type:
C ¼ FTF; ð2Þ
Ce ¼ FT

e Fe; ð3Þ
Cp ¼ FT

p Fp; ð4Þ
where Ce defines the elastic strain tensor and Cp is its analogous plastic counterpart. Consider the rates of F

and Fp defined by
L ¼ F�1 _F; Lp ¼ F�1
p

_Fp; ð5Þ
and let s be the Kirchhoff stress tensor and N its material counterpart (Eshelby-like) defined by
N ¼ FTsF�T: ð6Þ

The dissipation inequality
D ¼ N : L� q0
_wðCe; ZÞP 0; ð7Þ
where w is the stored energy function, Z is an internal variable and q0 the density at the reference configura-
tion, can be reduced to the following statements. Two relationships for the thermodynamical forces:
N ¼ 2q0CF�1
p

ow
oCe

F�T
p ; ð8Þ
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Y ¼ �q0

ow
oZ

; ð9Þ
and a reduced dissipation inequality
Dr ¼ N : Lp þ Y � _Z P 0: ð10Þ

We introduce the privileged directions of the material related to the elastic response as ive; i ¼ 1; 2; 3, where
the relations hold
ive � jve ¼ dij; ð11Þ

with dij as Kronecker’s delta and a dot denoting scalar multiplication of vectors. Given the privileged direc-
tions, one defines the so-called structural tensors as the tensor products
iMe ¼ ive � ive; i ¼ 1; 2; 3: ð12Þ

The free energy function is now assumed to be of the following quadratic form:
q0we ¼
X3

i¼1

aiJ i þ
1

2

X3

j¼1

aðijÞJ iJ j þ aðiþ9ÞJ ðiþ3Þ

" #
: ð13Þ
Here the invariants J i and J ðiþ3Þ are defined according to
J i ¼ tr½ðiMeÞCe�; J ðiþ3Þ ¼ tr½ðiMeÞC2
e �; i ¼ 1; 2; 3 ð14Þ
Herein ai; aðijÞ; aiþ9 are material constants, where aij ¼ aji. We use also the alternative numbering:
að11Þ ¼ a4; að22Þ ¼ a5; að33Þ ¼ a6; að12Þ ¼ að21Þ ¼ a7; að13Þ ¼ að31Þ ¼ a8; að23Þ ¼ að32Þ ¼ a9. Note that a general
non-linear formulation of the free energy function in terms of the invariants J ðiþ3Þ does not insure polyconvex-
ity, of relevance for the existence of solutions. However, the present formulation restricts the same invariant to
a linear term, which is completely sufficient to describe the behaviour of metals of interest in the present study.
Accordingly, the issue of polyconvexity of the free energy function is not relevant in the present restricted
context.

With the explicit form of the free energy function, the evaluation of (8) results in the expression
N ¼ 2q0

X3

i¼1

ow
oJ i

CC�1
p ðiMeÞ þ

ow
oJ ðiþ3Þ

ðCC�1
p ðiMeÞCC�1

p þ CC�1
p CC�1

p ðiMeÞÞ
� �( )

ð15Þ
Here, ðiMeÞ are modified structural tensors defined by
ðiMeÞ ¼ FT
p ðiMeÞF�T

p ; i ¼ 1; 2; 3: ð16Þ
For a better physical interpretation and experimental validation, it is useful to redefine the material constants.
In comparison with more classical elasticity constants, which can be found in any text book, e.g. [9], the mate-
rial parameters take
a4 ¼
1

4

1� m23m32

2E2E3D
� G12 � G13 þ G23

� �
; ð17Þ

a5 ¼
1

4

1� m31m13

2E3E1D
� G12 þ G13 � G23

� �
; ð18Þ

a6 ¼
1

4

1� m12m21

2E1E2D
þ G12 � G13 � G23

� �
; ð19Þ

a7 ¼
m12 þ m13m32

4E3E1D
; ð20Þ

a8 ¼
m13 þ m12m23

4E2E3D
; ð21Þ

a9 ¼
m23 þ m13m21

4E1E2D
; ð22Þ
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a10 ¼
1

8
G12 þ G13 � G23ð Þ; ð23Þ

a11 ¼
1

8
G12 � G13 þ G23ð Þ; ð24Þ

a12 ¼
1

8
�G12 þ G13 þ G23ð Þ; ð25Þ

a1 ¼ �ða4 þ a7 þ a8 þ 2a10Þ; ð26Þ
a2 ¼ �ða5 þ a7 þ a9 þ 2a11Þ; ð27Þ
a3 ¼ �ða6 þ a8 þ a9 þ 2a12Þ: ð28Þ
In the above relations, Ei, mij and Gij denote the elastic constants related to the three different directions of
orthotropy. Furthermore, D is abbreviation for the following expression
D ¼ 1� m12m21 � m23m32 � m31m13 � 2m12m23m31

E1E2E3

: ð29Þ
Having established the expression for the stress tensor, the flow rule follows. First the yield function is defined
by
/ ¼
ffiffiffi
2

3

r
½r0

11

ffiffiffi
v
p � ðr0

11 � Y Þ�; ð30Þ

v ¼
X3

i¼1

biI
2
i þ bðiþ6ÞI ðiþ3Þ þ

1

2

X3

j¼1

bðiþjþ1ÞI iI j

" #
for i 6¼ j; ð31Þ
and the non-linear isotropic hardening by
Y ¼ �HZ � ðr1 � r0
11Þ½1� expð�gZÞ�: ð32Þ
The scalar r0
11 as well as b1 � b12 are material constants. Furthermore, H is the linear isotropic hardening

parameter, r1 is the saturation yield stress, g is a constitutive parameter quantifying the rate at which the
saturation yield stress is attained during loading The yield function itself is assumed to depend on the
invariants
I i ¼ tr½ðiMyÞdevN�; I ðiþ3Þ ¼ tr½ðiMyÞðdevNÞ2�; i ¼ 1; 2; 3; ð33Þ
where the structural tensors related to the plastic flow are
iMy ¼ ivy � ivy ; i ¼ 1; 2; 3; ð34Þ
and ivy as the privileged directions of the plastic flow where the relations hold
ivy � jvy ¼ dij; ð35Þ
which may differ from those defined for the elastic response. Clearly, the privileged directions of the material
ve; vy must be given a priori when defining the problem at hand. As all material parameters of a specific spec-
imen they must be determined by experiments. In the examples considered in Section 4, the directions are given
by an angle and a plane (the directions are orthogonal and so one angle in a plane is sufficient to define the
directions).

The evolution equations now read
Lp ¼ k
o/
oN
¼ km ) m ¼

ffiffiffi
2

3

r
r0

11

2
ffiffiffi
v
p

ov
odevN

odevN
oN

; ð36Þ

_Z ¼ k
o/
oY
) _Z ¼

ffiffiffi
2

3

r
k; ð37Þ
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where
Kin

Elas
ov
odevN

¼
X3

i¼3

2biI iðiMyÞ þ bðiþ6ÞðdevNTðiMyÞ þ ðiMyÞdevNTÞ þ 1

2

X3

j¼1

bðiþjþ1ÞððiMyÞIj þ I iðjMyÞÞ
" #

;

for i 6¼ j: ð38Þ
Herein, k is plastic multiplier.
In comparison with experimental values, the material parameters can be determined to
b1 ¼
1

ðr0
11Þ

2
� 1

2

1

ðr0
12Þ

2
þ 1

ðr0
13Þ

2
� 1

ðr0
23Þ

2

 !
; ð39Þ

b2 ¼
1

ðr0
22Þ

2
� 1

2

1

ðr0
12Þ

2
� 1

ðr0
13Þ

2
þ 1

ðr0
23Þ

2

 !
; ð40Þ

b3 ¼
1

ðr0
33Þ

2
� 1

2
� 1

ðr0
12Þ

2
þ 1

ðr0
13Þ

2
þ 1

ðr0
23Þ

2

 !
; ð41Þ

b4 ¼ �
1

ðr0
11Þ

2
þ 1

ðr0
22Þ

2
� 1

ðr0
33Þ

2

 !
; ð42Þ

b5 ¼ �
1

ðr0
11Þ

2
� 1

ðr0
22Þ

2
þ 1

ðr0
33Þ

2

 !
; ð43Þ

b6 ¼ � � 1

ðr0
11Þ

2
þ 1

ðr0
22Þ

2
þ 1

ðr0
33Þ

2

 !
; ð44Þ

b7 ¼
1

2

1

ðr0
12Þ

2
þ 1

ðr0
13Þ

2
� 1

ðr0
23Þ

2

 !
; ð45Þ

b8 ¼
1

2

1

ðr0
12Þ

2
� 1

ðr0
13Þ

2
þ 1

ðr0
23Þ

2

 !
; ð46Þ

b9 ¼
1

2
� 1

ðr0
12Þ

2
þ 1

ðr0
13Þ

2
þ 1

ðr0
23Þ

2

 !
: ð47Þ
The values r0
ij are experimental values and indicate the flow stress in different direction. In the following box,

we summarize the theoretical framework:
ematics:

F ¼ 1þGrad u; C ¼ FTF; Cp ¼ FT
p Fp; Lp ¼ F�1

p
_Fp

tic law:

q0we ¼
X3

i¼1

aiJ i þ
1

2

X3

j¼1

aðijÞJ iJ j þ aðiþ9ÞJ ðiþ3Þ

" #

J i ¼ tr½ðiMeÞCe�; J ðiþ3Þ ¼ tr½ðiMeÞC2
e �; i ¼ 1; 2; 3

N ¼ 2q0

X3

i¼1

owe

oJ i
CC�1

p ðiMeÞ þ
owe

oJ ðiþ3Þ
ðCC�1

p ðiMeÞCC�1
p þ CC�1

p CC�1
p ðiMeÞÞ

� �( )

ðiMeÞ ¼ FT
p ðiMeÞF�T

p ; ðiMeÞ ¼ ive � ive; i ¼ 1; 2; 3



Flow rule:

/ ¼
ffiffiffi
2

3

r
r0

11

ffiffiffi
v
p � r0

11 � Y
� �	 


v ¼
X3

i¼1

biI
2
i þ bðiþ6ÞI ðiþ3Þ þ

1

2

X3

j¼1

bðiþjþ1ÞI iI j

" #
; i 6¼ j

I i ¼ tr½ðiMyÞdevN�; I iþ3 ¼ tr½ðiMyÞðdevNÞ2�; i ¼ 1; 2; 3

ðiMyÞ ¼ ivy � ivy ; i ¼ 1; 2; 3;

Lp ¼ km; _Z ¼
ffiffiffi
2

3

r
k

m ¼
ffiffiffi
2

3

r
r0

11

2
ffiffiffi
v
p dev

X3

i¼3

2biI iðiMyÞT þ bðiþ6ÞððiMyÞdevNþ ðiMyÞTdevNÞ
h(

þ 1

2

X3

j¼1

bðiþjþ1ÞððiMyÞTIj þ I iðjMyÞTÞ
#)

; for i 6¼ j

Box 1: Summary of the theory
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We recall a result discussed in the theoretical part of this work that the theory is not invariant with respect
to superimposed rotations on Fp. In fact, an underlying assumption is that the inelastic deformation does not
influence the elastic response. The validity of such an assumption could be questioned. In fact, the importance
of the numerical implementation to follow is that it give us means to test such assumptions by comparing the
numerical results against either experiments or further numerical results achieved by means of alternative the-
oretical frameworks.

3. Integration algorithm

The constitutive equations are integrated using the well known predictor–corrector method. For any two
time steps ½tn; tnþ1� with the time increment DT ¼ tnþ1 � tn, the displacements and internal variables are
assumed to be known at time step tn and they have to be determined for tnþ1. First the constitutive law is
assumed to be elastic with frozen internal variables (trial step). In the plastic corrector step, the right Cau-
chy–Green tensor C is held fixed while the internal variables are updated so as to fulfill the inelastic constitu-
tive laws. While this idea is classic and is used in most inelastic computations it has never been applied to
anisotropic multiplicative computations. It is this multiplicative structure with the full anisotropy which ren-
ders its realisation especially complicated and cumbersome. In both steps, the trial and the corrector step, lin-
earisation processes are to be performed which have never been employed so far. In order to achieve quadratic
convergence the linearisation must be performed correctly. Extreme care is to be exercised in order to achieve
the goal as many nested and complicated dependencies exist which have to be meticulously dealt with. The
linearisation process is of great importance for general non-homogenous large deformations. Computations
of this type are very sensitive to the quality of the tangent operators employed. Out of these reasons, we believe
that it is worthwhile to develop the numerical procedures in full, which is to happen in the next subsections.

The understanding that the unimodular tensor Fp is an element of the Lie group SLþð3;R3Þ, while Lp is an
element of the corresponding Lie algebra, motivates the use of the exponential map for time integration
F�1
p jnþ1 ¼ expð�DT LpÞF�1

p jn: ð48Þ
The reader may recall that Lie groups are transformation groups (matrices) with certain features. The unimod-
ular group is the group of matrices with determinant equals one. The term algebra of the group designates its
rates. The algebra of SLþð3;R3Þ constitutes of matrices with vanishing traces. By the fact that
det expð�DT LpÞ ¼ expð�DT trLpÞ ¼ expð0Þ ¼ 1, the condition of plastic incompressibility is preserved exactly.
The exponential map has been introduced by Weber and Anand [19] and Eterovic and Bathe [4] to integrate
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inelastic flow rules, where approximate evaluations of the exponential map with symmetric arguments were
carried out. An evaluation of the exponential map with non-symmetric arguments, up to an arbitrary
accuracy, was given in [14]. This scheme is adopted in this paper as well. The derivative of the exponential
map with respect to its argument is computed following a suggestion in [16].

3.1. Local iteration

The trial step provides us with the value of C. Within a finite element formulation, at every integration
point we wish to calculate an updated value for the elastic strain measure CC�1

p , which reads
CC�1
p jnþ1 ¼ Cjnþ1 expð�DT LpÞC�1

p jn expð�DT LT
p Þ: ð49Þ
This quantity determines the stress tensor. On the other hand, the rate Lp itself, as given in (36), depends on
the stress. Accordingly, a full iteration process is necessary to determine the inelastic rate such that the flow
rule is not violated. The guiding principle is to calculate the correct value of the plastic multiplier k through a
full Newton–Raphson iteration. As no co-axiality between the rate and the stress exists, the dependencies of
the yield function / on tensorial components must be taken into account. Note that during the iteration not
only the value but the direction of the stress will change as well.

At any iteration step, say iþ 1, the new value of k is given as
kjiþ1 ¼ kji þ Dk: ð50Þ
Following Eq. (37), the value of kjnþ1 at the end of the iteration cycle (time step nþ 1) determines the new
internal variable Z as well
Zjnþ1 ¼ Zjn þ
ffiffiffi
2

3

r
DTkjnþ1: ð51Þ
The calculation of Dk is based on the linearisation of Eq. (30). Accordingly, one has
o/
oN

oN
ok
þ o/

oY
oY
ok

� �����
i

� Dk ¼ �/ji; ð52Þ

Dk ¼ � o/
oN

oN
ok
þ o/

oY
oY
ok

� ��1
�����
i

/ji: ð53Þ
Some of the terms involved in this equation can be calculated in a straightforward manner. Using Eqs. (30)
and (32) one has
o/
oN
¼

ffiffiffi
2

3

r
r0

11

1

2
ffiffiffi
v
p

ov
odevN

odevN
oN

; ð54Þ

o/
oY
¼

ffiffiffi
2

3

r
; ð55Þ

oY
ok
¼ �

ffiffiffi
2

3

r
DT ½H þ gðr1 � rY Þ expð�gZjnþ1Þ�: ð56Þ
The term ov=odevN is known from (38). More involved is the term oN=ok to which we now turn our attention.
In the following and in an effort to make the operations transparent, index notation will be used through-

out. Now, N depends on C and C�1
p . During the local iteration, C is fixed and so is not a variable. On the other

hand, C�1
p depends on F�1

p , which, through (48), depends on Lp. The latter depends, via Eq. (36)1, on k in two
different ways. First, explicitly and, second, implicitly through the dependency of m on N, the dependency of
which on k we are seeking. With theses explicit and implicit dependencies, oN=ok reads
oNd
c

ok
¼ oNd

c

oðLpÞef
oðLpÞef

ok

� ����
explicit

þ
oðLpÞef

omg
h

omg
h

oNn
m

oNn
m

ok

!
; ð57Þ
which yields directly the expression
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oNn
m

ok
¼ dm

c dd
n �

oNd
c

oðLpÞef
oðLpÞef

omg
h

omg
h

oNn
m

 !�1
oNd

c

oðLpÞef
oðLpÞef

ok

������
explicit

: ð58Þ
It is important to point out that the term ‘explicit’ refers to the derivative of those terms which explicitly ap-
pear in the quantity with respect to which the derivative is considered. Note that in Eq. (58) the inverse of a
fourth order tensor is to be performed.

In the following, we attend to the determination of the different terms involved in (58). Altogether we need
to determine the following expressions: oLp=okjexplicit; oN=oLp; ðoLp=omÞðom=oNÞ. For the sake of clarity this is
done in the following sections.

3.1.1. The term oLp=okjexplicit

The explicit derivative follows immediately from (36)
oðLpÞef
ok

����
explicit

¼
ffiffiffi
2

3

r
r0

11

2
ffiffiffi
v
p

ov

oðdevNÞba

oðdevNÞba
oNf

e

¼ me
f : ð59Þ
3.1.2. The term oN=oLp

The derivative oN=oLp is derived using the chain rule by observing that N depend on Lp through its depen-
dency on F�1

p . One has first
oNj
i

oðLpÞkl
¼ oNj

i

oðF�1
p Þ

r
s

oðF�1
p Þ

r
s

oðLpÞkl
: ð60Þ
Each term in this equation is considered individually and will be discussed in the following paragraphs.

3.1.2.1. The term oN=oF�1
p . N depends on F�1

p via its dependency on C�1
p and mMe. From Eq. (15), we conclude
oNj
i

oðF�1
p Þ

r
s

¼ 2q0

X3

m¼1

o2w

oJ moðF�1
p Þ

r
s

ðCC�1
p Þ

a
i ðmMeÞja þ

ow
oJ m

oðCC�1
p Þ

a
i

oðF�1
p Þ

s
r

ðmMeÞja þ ðCC�1
p Þ

a
i

oðmMeÞja
oðF�1

p Þ
s
r

 !"(

þ ow
oJ mþ3

oðCC�1
p Þ

a
i

oðF�1
p Þ

s
r

ðmMeÞbaðCC�1
p Þ

j
b þ ðCC�1

p Þ
a
i ðmMeÞba

oðCC�1
p Þ

j
b

oðF�1
p Þ

s
r

þ ðCC�1
p Þ

a
i

oðmMeÞba
oðF�1

p Þ
s
r

ðCC�1
p Þ

j
b

 

þðCC�1
p Þ

a
i ðCC�1

p Þ
b
a

oðmMeÞjb
oðF�1

p Þ
s
r

þ
oðCC�1

p Þ
a
i

oðF�1
p Þ

s
r

ðCC�1
p Þ

b
aðmMeÞjb þ ðCC�1

p Þ
a
i

oðCC�1
p Þ

b
a

oðF�1
p Þ

s
r

ðmMeÞjb

!#)
: ð61Þ
The derivatives ow=oJ m can be easily provided. Eq. (13) yields
q0

owe

oJ 1

¼ a1 þ a4J 1 þ a7J 2 þ a8J 3; ð62Þ

q0

owe

oJ 2

¼ a2 þ a5J 2 þ a7J 1 þ a9J 3; ð63Þ

q0

owe

oJ 3

¼ a3 þ a6J 3 þ a8J 1 þ a9J 2; ð64Þ

q0

owe

oJ 4

¼ a10; ð65Þ

q0

owe

oJ 5

¼ a11; ð66Þ

q0

owe

oJ 6

¼ a12: ð67Þ
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The same is true for the second derivative of the above expressions with respect to F�1
p :
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r
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:
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>>>:

9>>>=
>>>;
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where we have, using (14),
oJ m

oðF�1
p Þ

r
s

¼ ðmMeÞnsðCÞruðF
�1
p Þ

u
n þ ðmMeÞsnðF�1

p Þ
t
nðCÞtr; i ¼ 1; 2; 3: ð68Þ
Further we need the expression
oðCC�1
p Þ

a
i

oðF�1
p Þ

r
s

¼ ðCÞirðF
�1
p Þ

as þ ðCÞiuðF
�1
p Þ

usda
r ; ð69Þ
and, finally, by taking into consideration the expression of the modified structural tensors (Eq. (16)), one has
oðmMeÞba
oðF�1

p Þ
r
s

¼ �ðFpÞsaðmMeÞbr þ ðFT
p mMeÞsad

b
r : ð70Þ
This completes the determination of oN=oF�1
p .

3.1.2.2. The term oF�1
p =oLp. The second derivative on the right hand side of (60) is established using (48). One

has
oðF�1
p Þ

r
s

oðLpÞkl
¼

oðF�1
p Þ

r
s

o½expð�DT LpÞ�ef
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oð�DT LpÞgh
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; ð71Þ
as well as
oðF�1
p Þ

r
s

o½expð�DT LpÞ�ef
¼ ðF�1

p jnÞ
f
s d

r
e: ð72Þ
The second term on the right hand side of (71) is the tangent of the exponential map with respect to its argu-
ment resulting in a fourth order tensor. We consider an expression derived in [16] which is denoted by !. Alto-
gether one has
oðF�1
p Þ

r
s

oðLpÞkl
¼ �DT!r

fk
lðF�1

p jnÞ
f
s ; ð73Þ
which completes, together with the results of the last section, the determination of oN=oLp.

3.1.3. The term ðoLp=omÞðom=oNÞ
In Eq. (58), we still need an expression for ðoLp=omÞðom=oNÞ. First, we consider the derivative of Lp with

respect to m. Using Eq. (36) one has
oðLpÞef
omg

h

¼ k: ð74Þ
By the very definition of m, also Eq. (36), the following relations hold
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While ov=odevN is defined in Eq. (38), the second derivative is given as
o2v

oðdevNÞbaoðdevNÞlk
¼
X3

i¼1

(
2bi iMy

� �a

b iMy

� �k

l
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h i

þ
X3
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bðiþjþ1Þ ðiMyÞkl ðjMyÞab þ ðjMyÞkl ðiMyÞab
h ih i)

; ð76Þ
where the condition i 6¼ j has to be fulfilled. Finally, we have
oðdevNÞba
oNf

e

¼ de
ad

b
f �

1

3
de

f d
b
a: ð77Þ
By now, all necessary ingredients to calculate oN=ok in Eq. (53) have been provided.
The previous sections give a clear picture of how much the local iteration in this general anisotropic setting

differs from that of an isotropic one. In isotropic cases, local iterations, if any, are reduced to solving simple
scalar equations.

3.2. The algorithmic tangent operator

In this section, the procedure for the computation of the algorithmic tangent operator is developed based
on the systematic linearisation of the second Piola–Kirchhoff tensor S with respect to the right Cauchy–Green
deformation tensor. The tensor S can be written as
S ¼ C�1N: ð78Þ

Accordingly, its linearisation takes the following form
oS

oC
¼ oC�1

oC
Nþ C�1 oN

oC
: ð79Þ
The first term on the right hand side is readily provided
oðC�1Þal

oðCÞij
ðNÞbl ¼ �ðC

�1ÞaiðC�1ÞjlðNÞlb ¼ �ðC�1ÞaiðSÞjb
: ð80Þ
The computation of the term oN=oC is based on the same ideas tested in the local iteration. One splits the
derivative into explicit terms and implicit ones. The correct identification of the implicit dependencies is at
the heart of the whole procedure. According to this, we may elaborate
oNb
a

oðCÞkl

¼ oNb
a

oðLpÞgh
oðLpÞgh
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a
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����
explicit

: ð81Þ
Herein, the term oN=oLp is identical to the term considered in Eq. (60) and evaluated in some sections of Sec-
tion 3.1. The expression established in the last local iteration is the one which is to be used in the evaluation of
(81). For clarity, further terms involved in (81) are evaluated in the following sections.

3.2.1. Evaluation of oN=oCjexplicit

We start with Eq. (15) which provides
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Using (62)–(67) the following derivatives can be established
o
2w

oðJ iÞoðCÞkl

¼

a4
oJ1

oðCÞkl
þ a7

oJ2

oðCÞkl
þ a8

oJ3

oðCÞkl
;

a5
oJ2

oðCÞkl
þ a7

oJ1

oðCÞkl
þ a9

oJ3

oðCÞkl
;

a6
oJ3

oðCÞkl
þ a8

oJ1

oðCÞkl
þ a9

oJ2

oðCÞkl
;

8>><
>>: ð83Þ
where we have
oJ i

oðCÞkl

¼ ðiMeÞmn ðF�1
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k
mðF�1

p Þ
ln
; i ¼ 1; 2; 3: ð84Þ
The last term to be defined in Eq. (82) is
oðCC�1
p Þ

j
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oðCÞkl
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�1
p Þ

l
bðF�1

p Þ
jb
; ð85Þ
which completes the evaluation of oN=oCjexplicit.

3.2.2. Evaluation of oLp=oC
To evaluate Eq. (81) we still need the derivative of Lp with respect to C. The approach is based on obtaining

an explicit expression for om=oC with the help of which the derivative oLp=oC can be established. First, Eq.
(36) results in
oðLpÞij
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Inserting (86) into (87) yields
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Note that we could not have solved for oLp=oC should we have inserted (87) into (86), since ok=oC itself is also
a function of oLp=oC as will be shown shortly. The following simple relations hold for the explicit derivatives:
oðLpÞij
oma
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¼ kdi
ad
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������
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¼ me
f : ð89Þ
What we still need is the derivative of the scalar k with respect to C. This is obtained by taking the derivative of
the yield function, defined in Eq. (30), with respect to C. One has first
o/
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which, together with (89), results in
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The derivatives o/=ok and o/=oN have been considered in Section 3.1. Their values are available from the
last local iteration step. Eq. (91) is now inserted into (88) and the resulting equation is solved for the term
om=oC:
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Note that all terms involved in this equation are either known or has been provided in the last step of the local
iteration: the derivative om=oN is established in (75), oN=oLp is determined through (60), o/=oN is readily avail-
able through (38), and oN=oCjexplicit is calculated in Section 3.2.1. Hence, om=oC can be evaluated. The eval-
uation necessitates the inversion of a fourth order tensor. With this result at hand we can solve Eq. (91).
Having established the expressions for om=oC and ok=oC we can evaluate Eq. (86) and finally, with that expres-
sion we can solve for Eq. (81), which results in the exact expression for the consistent elastoplastic tangent
operator as formulated in (79).

Note that the tangent operator is non-symmetric in general. The loss of symmetry is not a direct conse-
quence of the anisotropy itself but a consequence of the fact that the multiplicative structure of the theory that
results directly from the multiplicative decomposition of the deformation gradient, together with the devel-
oped integration scheme.

4. Numerical examples

The integration algorithms presented so far have been implemented in a code for shell finite element com-
putations. The shell theory and the finite element formulation have been presented in [14,16]. The shell formu-
lation is based on a seven-parameter theory which includes transversal strains and thus enables the application
of a complete three-dimensional constitutive law. The enhanced strain concept is applied to avoid locking
phenomena.

The level of complexity exhibited by the tangent operator restricts the time steps for which convergence is
achieved in the case of complex deformations. In the examples to follow (two- and three-dimensional), some
500 time steps have been used to arrive at the final deformed configuration.

4.1. Uniaxial tensile test

Lademo et al. [7] performed experiments on aluminum alloy AA7108-T1 specimen, Fig. 1. The main
idea was to investigate the influence of the main material directions on the material parameters. Several
experiments are performed where the specimens directions are rotated for 0�, 35�, 45�, 55� and 90� relative
to the extrusion direction. In order to compare the numerical and the experimental results, the model is
computed for different position of the material axes (0�, 12�, 25�, 35�, 45�, 55�, 75� and 90�), see Fig. 2.
The following material parameters for the numerical model are considered according to the ones identified
in [7]
Fig. 1. Uniaxial tensile test: geometry of specimen used for experimental test, from [7].



Fig. 2. Uniaxial tensile test: geometry of numerical model and material data.
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E1 ¼ 68135 MPa; E2 ¼ 69316 MPa; E3 ¼ 68135 MPa;

m12 ¼ 0:32; m12 ¼ 0:32; m12 ¼ 0:32;

G12 ¼ G13 ¼ G23 ¼ 25808:7 MPa;

r11 ¼ 295 MPa; r22 ¼ 263 MPa; r33 ¼ 215:8 MPa;

r12 ¼ 120:69 MPa; r13 ¼ 140:69 MPa; r23 ¼ 140:69 MPa;

H ¼ 0 MPa:
A comparison of the numerically and experimentally obtained curves, representing yield stresses in different
directions, is presented in Fig. 3. As can be noticed, the results are in good agreement.

4.2. Isoerror maps

In order to get some insight into the accuracy of the numerical algorithm, isoerror maps are developed as
described in [18]. Despite its lack of mathematical rigor, the procedure provides a quick numerical assessment
of the accuracy of the integration algorithm.

Three points on the yield surface are selected which represent a wide range of possible states of stress. These
points, labeled A, B and C, see Fig. 4, correspond to uniaxial, biaxial and pure shear stress states, respectively.
In these cases, one element is loaded to the state A, B or C and than various combinations of strain increments
ðDe1;De2Þ are applied in a single step. Next, the ‘exact’ stresses are calculated for the same strain increment by
subdividing the increments until further refinement produces negligible changes in the calculated stresses (in
this case 1000 subincrements are made). Results are reported in terms of the relative root mean square of
the error between ‘exact’ (S�) and computed solution (S) according to the expression
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðS� S�Þ : ðS� S�Þ�
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Fig. 3. Uniaxial tensile test: comparison of numerical and experimental results.



Fig. 4. Isoerror procedure: plane stress yield surface, from Simo and Taylor [18].
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Fig. 5. Isoerror procedure: dependency of the numerical error on the strain increments in two directions for the load case A.
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Computations are performed for an orthotropic material with the following parameters:
E1 ¼ 48042:7 MPa; E2 ¼ 41800 MPa; E3 ¼ 41800 MPa;

m12 ¼ 0:2355; m12 ¼ 0:258; m12 ¼ 0:24;

G12 ¼ 14214:0 MPa; G13 ¼ 14804:0 MPa; G23 ¼ 14804:0 MPa;

r11 ¼ 180 MPa; r22 ¼ 220 MPa; r33 ¼ 250 MPa;

r12 ¼ 187:02 MPa; r13 ¼ 127:02 MPa; r23 ¼ 127:02 MPa:
Results are shown for different strain increment pairs. The strain increments are normalized with respect to the
yield strain (eY ). Figs. 5–7 show the error of the numerical procedure for the three different load cases named
A, B and C. As can be observed in all three cases the error is not larger than 3%. For example, in [8] largest
error is up to 20%, in [1] it is between 1.4% and 3.5% or in [2] between 5% and 20%. However, it should be
mentioned that while the first paper is isotropic in nature, the two others consider anisotropy within the small
strain regime only.

4.3. Circular plate subjected to line load

The idea to this example is borrowed, though slightly modified, from Papadopoulos and Lu [11]. The for-
mulation there is based on the additive decomposition of the logarithmic strain tensor. A circular plate of
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radius R ¼ 400 mm and thickness t ¼ 10 mm with a concentric hole of radius Ri ¼ 200 mm is subjected to a
line load of qz ¼ 1000 N=mm alongside the inner radius. Out of plane deformations are prevented so that only
planar displacements and rotations can occur. Due to the geometrical and material symmetry one quarter of
the plate is discretised with 10� 10 elements. The material data and geometry of the plate are shown in Fig. 8.

Computations are performed for an elastically isotropic but plastically anisotropic material. The loading is
presented in Fig. 6 but the computation itself is carried out until the maximum deformation, as shown in the
figures, is reached.

Here three different sets of parameters are considered. This is determined by considering different ratios of
the yield shear stress to the normal shear stress. In case A we have r0

12 ¼ 0:5r0
11=

ffiffiffi
3
p

, in case B r0
12 ¼ r0

11=
ffiffiffi
3
p

(isotropic case) and in case C r0
12 ¼ 2:0r0

11=
ffiffiffi
3
p

. The axes of anisotropy are defined to coincide with global axes
1 and 2. Fig. 9 shows deformed configurations for the three different case studies. As expected, in case A the
plastic strains are concentrated in a direction at an angle of 45�, while in case C the concentration takes place
in the direction of the material axes 1 and 2. In both anisotropic cases, the non-axiality between deformations
and loading is clearly demonstrated.

4.4. Simply supported square plate

The elastoplastic deformation of a simply supported square plate is considered in the next example. The
geometrical and material data is shown in Fig. 10, where the elastic response as well as the plastic one are
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Fig. 8. Circular plate subjected to line load: geometrical and material parameters.

Fig. 9. Circular plate subjected to line load: deformed configuration.
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assumed anisotropic. The privileged directions of both responses are assumed to coincide. The plate, subjected
to a conservative constant transversal load, is supported at its boundaries in a way which does not allow for
displacements in the out-of-plane direction to occur but allows for the boundary to undergo displacements in
the plane itself. A finite element mesh of 35� 35 is used to discretise the whole plate. The computation is car-
ried out until the maximum deformations, as shown in the figures, are reached.

Figs. 11 and 12 show deformed configurations of the plate for different cases. In the cases under con-
sideration, the privileged directions relative to the fixed co-ordinate system describe angles of 0�, 30�, 45�
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and 60�. The isolines of the vertical displacement are plotted on these figures. A significant influence of the
material privileged directions on the deformation process can be observed.

The load vs. vertical displacement curve plotted for the middle point is compared with the one obtained
using the commercial finite element software package ABAQUS, Fig. 13. In ABAQUS, the used material
model is based on the additive decomposition of the strain rate of the spatial logarithmic strain with the
Green–Naghdi rate as the objective stress rate. Implemented are Hill’s orthotropic yield criterion as well as
an orthotropic elastic constitutive law. The formulation is restricted to small elastic strains. Two different
directions of anisotropy are considered. As is clear from Fig. 13, the achieved results are compared with those
from ABAQUS. Deviations become more pronounced at levels of larger deformations. However, we have to
bear in mind that, while the theories are different we are still using same set of material parameters for either
computation. As stated in the introduction, additive decompositions lack the rigour of the multiplicative
decomposition and may produce physically questionable results as reported in [5]. However, the costs involved
in computations based on the multiplicative decompositions are clearly much higher than those based on addi-
tive decompositions. This is expected since the mathematical structure of multiplicative anisotropy is by far
much more complicated.
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4.5. Cylindrical roof subjected to line load

As a third example, a cylindrical roof under line load is considered. The cylinder is supported by rigid
diaphragms alongside the curved boundaries. The geometry and the material data are presented in Fig. 14.
A finite element mesh of 36� 36 elements has been employed. Here too elastic as well as plastic anisot-
ropy are considered with the privileged directions of both responses assumed to coincide. We are taking
local orientation of the axes in such a manner that for the computation defined by angle 0� privileged
material directions coincide with circumferential, axial and radial direction of cylinder. In succeeding com-
putations, the privileged directions are rotated for 30�, 45� and 60� with respect to the previously men-
tioned initial position. The influence of the material directions on the deformation responses is
considered, and it is presented by load–displacement curves. Altogether 500 time steps has been calculated
with 2–3 iterations in each time step.

Load factors (relative to the reference loading) vs. vertical displacements for two selected points A and B
are plotted in Figs. 15 and 16. The deformed configurations of the cylindrical roof for the material axes of 0�
and 45� are presented in Figs. 17 and 18. The isolines of the vertical displacement are plotted. As evident, a
significant influence of the material directions on the elastoplastic deformation process is observed.
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Fig. 17. Cylindrical roof: deformed configuration at 0� and 45� – isometric projection.

Fig. 18. Cylindrical roof: deformed configuration at 0� and 45� – plan projection.
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5. Conclusion

A consistent large strain elastoplastic material model in the framework of multiplicative inelasticity was
presented. The integration of the plastic rate was achieved by utilizing the exponential map which preserved
the plastic incompressibility condition. To the first time, the consistent integration including the linearisation
process for the anisotropic and multiplicative theoretical framework has been achieved. The details have been
presented in full.

The numerical examples demonstrate a significant influence of anisotropy and the privileged directions on
the deformation process. While the numerical algorithms have been, as demonstrated, successful, the numer-
ical efforts are still considerable. The tangent operator renders non-symmetric and its computation asks for
lengthy operations. This calls for the search for alternative integration schemes, which may at least preserve
the symmetry of the tangent operator. Also the stability of the integration scheme with regard to the time step
is an aspect which is worth an in-depth investigation.

On the theoretical side, the stored energy function is not invariant with respect to superimposed rotations
on Fp. There are other rules and restrictions which could be imposed on such a function in order for it to exhi-
bit such an invariance. The importance of the numerical implementation considered here is also reflected in the
fact that the capabilities of such models can be tested and compared against each other. The implementation
of alternative models is to be considered in future work.
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